Fourier Series: part 1
29-Jan-2024
Taylor Series
You are probably already familiar with Taylor series. Taylor series is an approximate expansion of a function around using polynomials. It was usually recognized as:
The property of Taylor series is that it is a local approximation. So the function can be replaced by the series as long as it converges and the function has derivatives. Each of the coefficient of the series , corresponds to the value of the n-th derivative at point .
In other words, the Taylor series expansion can be understood as a set of the derivative’s value that defines the function.
But what if the n-th derivative can be inferred from the function? For example, suppose that there exists a function whose its own derivatives?
A function whose its own derivatives
Making a statement: “function whose its own derivatives” is equivalent of defining function that is invariant under the derivative operator.
Suppose that it has a Taylor expansion. Since derivative operator is linear, we can operate on it term by term. The derivative of the n-th term:
We now have a recurrent relation:
However, at , then . This is because the value of the derivative at must be the same for any n-th derivative. It is the smallest integer possible. Consequently:
Thus we found our special function:
This function is so special, we called it the “exponential” function. Since it also exhibits properties of exponential form:
We will elaborate this on a separate article. But for now, we realized that there exists a function like this.
Now, what if we replaced with . What is this function?
This would of course blow up to infinity since would be a very big number if is positive. But what about this function?
It will converge really fast.
A function with alternating derivatives
Note that if we swap with . We will have this function .
The Taylor series will have its terms alternating between positive and negative. The n-th derivative will be:
As you can see, the sign alternates for every multiple of 2.
If we swap with or . With is the imaginary number unit. We will have alternating derivatives with every multiple of 4.
Fourier Series
We will now began to extend our ideas into something that is known as “Fourier Series”. Instead of swapping with and confuse ourselves, we renamed the parameter to perform substitution
Suppose that we have a well-behaved Taylor Series of a function around . let us swap and tries to see what happened. We will have:
If we use , conveniently we have:
Now, we might be tempted to perform substitution . This series is similar with , except the indices comes from the negative integers. The only reason we won’t be able to do that is because doesn’t make sense.
So let’s use the property of derivative to see the Taylor expansion. One nice property of function is that it is differentiable everywhere. Keeping in mind that the derivative will be around , we tried to simplify our derivative expression like below. If we use the full chain, it will be very long.
However around is the coefficient of that Taylor series. If we directly match the coefficient, we will have:
Now, if we want to make some kind of replacement for negative factorial by doing substitution , then the left hand side must also makes sense.
The term can still make sense and defined.
But the interesting part is . What does it mean to have a negative n-th derivative? You might guess intuitively that it is an anti-derivative. Suppose that is defined when . If is the anti-derivative of , then (the first derivative of ), has to be by definition. So, in order for a function to have n-th derivative with negative , then it must have an anti-derivative. You can get the anti-derivative using integral.
In summary, the notion of this negative factorial can be completely replaced, if the function itself has anti-derivative, infinitely. Or in other words, you can integrate the function infinitely, and its values on is defined.
Here comes the good part. If a function have alternating derivative, like , consequently we can integrate it infinitely. The function and , is a little bit more special because both of them have cycle of multiple of 4. This relation is different from (cycle of 1) and (cycle of 2).
Now back to our previous series. We have justification to write as , another constants. Even though is a negative number.
We will then have this pair of series:
The above rearrangement is possible by swapping and then renaming to . We got a series with the same term representation, but the index counts from negative infinity.
Adding those two together, we have a series that spans from to , a much larger spans than the Taylor series!
Now, let’s ponder a bit. If the right side converges, then any function that is invariant under its input reciprocals can be represented like this. In a much more general sense, even the coefficient can just be combined and renamed as .
Let’s define a new function , based on this series.
We will call the right hand side, the Fourier Series with complex coefficient. This is because there are other equivalent representation of Fourier Series, but for now let’s just use this.
Example of Fourier Series
There is a very straightforward example of a function that is invariant under its input reciprocals.
Suppose that . Now suppose . We have a function
This is actually a representation of the function as complex exponent. If we express it using Fourier Series/Sums, we will have coefficient set of